திங்கள், 30 டிசம்பர், 2013

CS61 ARTIFICIAL INTELLIGENCE



CS61                           ARTIFICIAL INTELLIGENCE                           L T P C         3 0 0 3

UNIT I PROBLEM SOLVING
Introduction – Agents – Problem formulation – uninformed search strategies – heuristics
– informed search strategies – constraint satisfaction

UNIT II LOGICAL REASONING
Logical agents – propositional logic – inferences – first-order logic – inferences in firstorder
logic – forward chaining – backward chaining – unification – resolution

UNIT III PLANNING
Planning with state-space search – partial-order planning – planning graphs – planning
and acting in the real world

UNIT IV UNCERTAIN KNOWLEDGE AND REASONING
Uncertainty – review of probability - probabilistic Reasoning – Bayesian networks –
inferences in Bayesian networks – Temporal models – Hidden Markov models

UNIT V LEARNING
Learning from observation - Inductive learning – Decision trees – Explanation based
learning – Statistical Learning methods - Reinforcement Learning

TOTAL: 45PERIODS
TEXT BOOK:
1. S. Russel and P. Norvig, “Artificial Intelligence – A Modern Approach”, Second
Edition, Pearson Education, 2003.

REFERENCES:
1. David Poole, Alan Mackworth, Randy Goebel, ”Computational Intelligence : a
logical approach”, Oxford University Press, 2004.
2. G. Luger, “Artificial Intelligence: Structures and Strategies for complex problem
solving”, Fourth Edition, Pearson Education, 2002.
3. J. Nilsson, “Artificial Intelligence: A new Synthesis”, Elsevier Publishers, 1998.

கருத்துகள் இல்லை:

கருத்துரையிடுக